
www.manaraa.com

Resource-oriented Computing: Design, Implementation,
and Evaluation of WSRF.NET

Glenn Wasson & Norm Beekwilder & David Del Vecchio &

Mark Morgan & Marty Humphrey

Received: 11 July 2006 /Accepted: 11 January 2007 /Published online: 21 February 2007
Springer Science + Business Media B.V. 2007

Abstract Web services have changed the nature of
distributed systems development and operation. The
Grid community has begun architecting Grid systems
to leverage available commercial and open-source Web
services technology through the definition of “stateful
resources.” These resource-oriented systems are an
extension of service-oriented systems typically built
using Web services in that they treat state (and the
management of state) as an architectural concern rather
than an application-level concern. We present the de-
sign, implementation, and evaluation of WSRF.NET, a
toolkit for building resource-oriented services using
the Microsoft .NET platform. We describe the benefits
WSRF.NET provides over “pure” .NET Web services
for resource-oriented systems development, in terms
of programmability (both programming-language
abstractions and compile-time tooling) and improved
run-time persistence/management of state. The run-

time overhead of WSRF.NET is quantitatively evalu-
ated against other technologies that can be used to
add state management to Web services. We argue the
core WSRF.NET primitives incur negligible overhead
compared to typical domain-specific resource manip-
ulation operations. For example, a computational
simulation that lasts 10 min and reads/writes 100
medium-sized resources over those 10 min incurs
only 0.46% overhead in WSRF.NET operations.

Key words Grid computing . middleware .

stateful services . web services .WSRF

1 Introduction

Web services have fundamentally changed Grid com-
puting [16]. While Grid computing broadly addresses
both the mechanism and policy by which to collaborate
across multiple administrative domains (and thereby
form “Virtual Organizations”), the central aspect of
Grid computing is middleware. By providing applica-
tion-independent, transport-neutral mechanisms for
interface description (WSDL) and message encoding
(SOAP), Web services provide potential solutions to
many problems that have persisted in Grid computing,
particularly discovery and interoperability. In addition,
the availability of Web service tooling has facilitated
rapid adoption and made the ability to deploy Web
services nearly ubiquitous. Commercial Web service
infrastructures have been introduced by several com-
panies, including IBM [30] and Microsoft [34]; these

J Grid Computing (2008) 6:177–194
DOI 10.1007/s10723-007-9064-x

G. Wasson (*) :N. Beekwilder :D. D. Vecchio :
M. Morgan :M. Humphrey
Computer Science Department, University of Virginia,
151 Engineer’s Way, Charlottesville, VA 22904, USA
e-mail: wasson@virginia.edu

N. Beekwilder
e-mail: nfb5z@virginia.edu

D. D. Vecchio
e-mail: dad3e@virginia.edu

M. Morgan
e-mail: mmm2a@virginia.edu

M. Humphrey
e-mail: mah2a@virginia.edu

www.manaraa.com

“Web service hosting environments” consist of execu-
tion environments and tooling designed to make Web
service programming, deployment, and management
easier. Projects such as Tomcat [4] and Mono [38]
provide Web service capabilities to the large open
source community.

The introduction of Web services caused the Grid
community, led by the Open Grid Forum (OGF) [18],
to consider how Web service technology could be
leveraged to “virtualize” the components of Grid
systems [16]. From the work of the OGF and others,
the concept of Grids as collections of interacting
“resources” emerged. Resources in this context are
stateful entities that receive (and typically send)
messages. In Grid systems, these could be physical
resources such as CPU, disk or network, or they could
be software components such as applications or
system services (e.g. schedulers, information services,
brokers, etc.). These ideas began to take shape in
2002 with the release of the Open Grid Services
Infrastructure (OGSI) standard [42] under the broader
umbrella of the Open Grid Services Architecture [39].
In OGSI, the notion of resources had not yet been
formalized. Instead, an architecture based on stateful
services was proposed in which each service was
meant to virtualize a separate resource (e.g. a file).
While OGSI served as the inspiration for what
followed, the standard itself met with limited success
because of incompatibilities with available Web ser-
vices infrastructure. In January 2004, the Web
Services Resource Framework (WSRF) [46] and
Web Services Notification (WSN) [47] families of
specifications were introduced to address these prob-
lems. WSRF views applications as communicating
collections of WS-Resources, which are combinations
of Web services and stateful resources. In other
words, a Web service provides the web-addressable
“front-end” for the resource’s functionality on the
back-end. Each WS-Resource can be individually
addressed and is described by an XML document
with known schema. The WSRF specifications
standardize interactions to discover, group, query
and manipulate resources (via their corresponding
WS-Resource). The WSN specifications provide a
messaging architecture that, while independent of
WSRF, is often referred to by WSRF as a means of
sending asynchronous messages between resources.

This new resource-oriented architecture extends
the notion of Service Oriented Architecture (SOA)

[10]. The resource-oriented architecture focuses on
state and the management of state as an architectural
concern, while in an SOA state is typically treated as
an application-level concern. As such, today’s Web
service programming environments do not explicitly
support the resource-oriented model for building
systems. This paper discusses WSRF.NET, a toolkit
for building resource-oriented systems using the
Microsoft .NET platform [36]. WSRF.NET provides
an attribute-based programming model that we feel is
significantly easier to use than “vanilla” Web services
on top of which one must implement one

,
s own

mechanisms for manipulating stateful resources.
WSRF.NET allows Web service programmers to
simply expose and manipulate associated stateful
resources via the WSRF/WSN defined messages.
Also, WSRF.NET provides service and client-side
libraries that automate many common WSRF/WSN
tasks. In earlier work [25, 29], we presented the
design and many open issues involving our first
version of WSRF.NET; this paper presents the lessons
we have learned since and offers the first quantitative
evaluation of the run-time overhead of WSRF.NET as
compared to other technologies that can be used to
add state management to Web services. We argue that
the core WSRF.NET primitives (Create, Query, Read,
Write, Delete) incur negligible overhead compared to
typical domain-specific resource manipulation oper-
ations. For example, a computational simulation that
lasts 10 min and reads/writes 100 medium-sized
resources over those 10 min incurs only 0.46%
overhead in WSRF.NET operations.

The remainder of this paper is organized as follows.
Section 2 discusses the WSRF and WSN specifications
in more detail. Section 3 describes WSRF.NET, its
architecture and programming model. Section 4 argues
for the value that WSRF.NET provides to designers of
resource-oriented services over standard .NET Web
services. Section 5 contains an evaluation of WSRF.
NET. Section 6 concludes.

2 The Web Services Resource Framework
and Web Services Notification Specifications

WSRF [46] was introduced in January 2004 with the
goal of defining conventions for representing,
abstracting, and manipulating stateful resources via
Web services. WSRF defines the WS-Resource

178 G. Wasson, et al.

www.manaraa.com

construct, a “composition of a Web service and a
stateful resource” described by an XML document
(with known schema) that is associated with the Web
service’s port type and addressed by one of the WS-
Resource Access Patterns [22]. The most common
pattern is to address the WS-Resource using a WS-
Addressing Endpoint Reference (EPR) [24]. WSRF
defines various operations on resources which are
achieved by sending standard messages to a resource’s
Web service (the one which is part of its WS-
Resource). The four WSRF specifications, currently
standardized in OASIS, are:

& WS-ResourceProperties [20] defines how a WS-
Resource is described by an XML document that
can be queried and modified. This document is a
view or projection of the state of the WS-
Resource and is typically not equivalent to the
state. Elements of this document are referred to as
Resource Properties. WS-ResourceProperties
defines various methods for retrieving Resource
Properties, from simple retrieval “by name” to full
XPath queries of the document. Resource Proper-
ties can also be “set,” meaning values for prop-
erties can be sent from client to service. It is up to
the service to decide how these values should be
incorporated into the stateful resource.

& WS-ResourceLifetime [41] defines mechanisms for
destroying WS-Resources. Destruction can either
be immediate or via a lease-based mechanism
(resources terminate at some specified time in the
future). Note that there is no “create” mechanism
defined, as WSRF views this as application
specific.

& WS-ServiceGroups [33] describes how collections
of Web services and/or WS-Resources can be
represented and managed. A grouping mecha-
nism, based on common characteristics expressed
through Resource Properties, is defined to provide
access to a set of WS-Resources with those
characteristics.

& WS-BaseFaults [32] defines a standard exception
reporting format. Other WSRF and WSN specifi-
cations define fault conditions in terms of WS-
BaseFaults.

The WSRF specifications are compliant with the
WS-Interoperability Basic Profile [7], meaning that any
WS-I-compliant Web services client can interact with
any service that supports the WSRF specifications.

The WS-Notification (WSN) family of specifica-
tions is also separately standardized in OASIS. These
three specifications are: WS-BaseNotification [21],
WS-BrokeredNotification [13], and WS-Topics [43].
In WS-BaseNotification, “notification consumers”
send subscribe messages to “notification producers”
to request asynchronous delivery of messages. A
subscribe request may contain a set of filters that
restrict which notification messages are delivered. The
most common filter specifies a message topic using
one of the topic expression dialects defined in WS-
Topics (e.g., topic names can be specified with simple
strings, hierarchical topic trees, or wildcard expres-
sions). Additional filters can be used to examine
message content as well as the contents of the
notification producer’s current Resource Properties.
Each subscription is managed by a subscription
manager service (which may be the same service as
the notification producer). Clients can request an initial
lifetime for subscriptions, and the subscription manag-
er service is used to control subscription lifetime
thereafter. When a client wishes to unsubscribe, they
delete their subscription through the subscription
manager service. When a notification producer gen-
erates a message, it will send that message wrapped in
a <Notify> element (though unwrapped “raw” delivery
is also possible) to all subscribers whose filters
evaluate to “true.” WS-BrokeredNotification provides
for intermediaries between notification producers and
notification consumers. These intermediaries receive
messages from notification producers and broadcast
them to their own set of subscribers, allowing for
architectures in which notification producers cannot or
do not care to know who is subscribed.

3 WSRF.NET

WSRF.NET is a toolkit for building resource-oriented,
WSRF-compliant Web services and clients. It consists
of a programming model (and associated tooling) as
well as a set of service and client-side libraries that
automate common tasks. The general architecture of a
WSRF.NET service is shown in Fig. 1.

WSRF.NET services are normal Microsoft Web
services. That is, they are indistinguishable from any
other Web service to Microsoft_s Internet Information
Services web server (IIS) and web service container
(ASP.NET). From the Microsoft web infrastructure’s

Resource-oriented computing: Design, implementation, and evaluation of WSRF.NET 179

www.manaraa.com

perspective, WSRF.NET service code may be execut-
ed as any other service code is executed. A client
invocation proceeds as follows. The client’s request
message (typically encoded in SOAP and sent over
HTTP) is received by IIS and forwarded to ASP.NET
(based the request URL suffix, .asmx for Web
services). ASP.NET creates an Application Domain
(a protected memory segment) for the service to
execute in, instantiates a new instance of the Web
service class and sends the client message through the
Web Service Enhancements (WSE) filters [37] to
process the SOAP message headers (for security
processing for example). Next the WSRF.NET service
code executes. A WSRF.NET service consists of a
service author’s Web service “wrapped” by WSRF.
NET code. The initial block of WSRF.NET code,
which runs before the service author’s code, interacts
with one of WSRF.NET’s compatible back-end
resource stores to “load” the resource state into
memory. Next the Web service author’s code runs,
presumably accessing and/or manipulating the re-
source state and finally returning results for the client.
Before those results are actually placed on the wire to
the client, WSRF.NET code stores any changes to the
resource state back to the resource store. Finally,
results are returned to the client via WSE output
filters and then IIS. ASP.NET now destroys the Web
service object it created for this call. Recall the
standard Microsoft Web services as stateless and
hence the WSRF.NET “storage” step is necessary to
preserve resource state. In this way, resource-oriented
systems can be built on top of stateless Web services.

The exact activities that occur when “loading” or
“storing” a stateful resource depends on the nature of
the resource itself. WSRF.NET natively supports

three types of resources. First, it supports data
resources (e.g. a healthcare record). These resources
are stored in either an XML database (WSRF.NET
supports Microsoft SQLServer [35] and Xindice [5])
or an in-memory XML document. Loading and
storing such resources is done through XPath queries
and SQL commands respectively. The second type of
resource supported by WSRF.NET is the Windows
process. WSRF.NET can create (launch) processes
and provide information about the state of the process
to web clients. WSRF.NET uses a Windows service to
hold the process handle across Web service invoca-
tions, thus keeping the process information available
in the OS. Loading this resource involves binding a
process handle usable by the Web service to one held
by the Windows service. Storage is simplified for this
resource because of the limited ability of client to
affect processes through these handles. Any changes
that can be made (including killing the process) are
immediately sent to the operating system through the
process handle and therefore all that must be main-
tained by WSRF.NET is the process handle. The last
type of resource supported by WSRF.NET is the
“custom” resource. Any other type of resource, such
as scientific instruments or legacy data, can be used
by WSRF.NET simply by creating wrapper objects
that implement the IResource interface. The IRe-
source interface consists of loading and storing
methods which can be custom tailored to any “back-
end” resource, allowing WSRF.NET to expose it as a
WS-Resource.

3.1 Programming WSRF.NET

The guiding principle of WSRF.NET’s programming
model is to make programming a WSRF.NET service
as easy as programming any other Web service.
WSRF.NET’s programming model provides an ab-
straction for constructing, representing and manipu-
lating stateful resources, as well as a means of easily
generating messages that comply with the WSRF
protocols. These capabilities are accessed through a
set of metadata tags, called attributes in .NET, which
can be placed on a Web service class (or members of
the class). An example of a WSRF.NET service using
these Attributes is shown in Fig. 2. The text enclosed
in square brackets ([]) are the attributes.

The three WSRF.NET attributes shown in Fig. 2 are
[Resource], [ResourceProperty] and [WSRFPortType]

WSE

WSRF.NET code

WSRF.NET code

User functions or
WSRF defined

functions Resource
Store

WSE

Web Service (ASP.NET)

Client

IIS

Fig. 1 WSRF.NET Service Architecture

180 G. Wasson, et al.

www.manaraa.com

(note that the [WebMethod] attribute is used by, but not
specific to, WSRF.NET). These attributes form the
core of the WSRF.NET programming model (see [44]
for a complete list of available attributes). [Resource] is
used to mark data members that are part of a stateful
resource manipulated by this service. In other words,
the resources of a service are defined by the set of data
members labeled with the [Resource] attribute. For
example, the resource defined for the service in Fig. 2
consists of a string array and an integer.1 Accordingly,
the actual state of a resource is a set of values for these
members. Since multiple WS-Resources can share the
same Web service, i.e. multiple stateful resources can
be exposed as WS-Resources by the same service,
there can be multiple instances of each resource “type.”
In other words, the data types of all members labeled
with [Resource] define a sort of resource schema for
the service. All resources associated with the service

will consist of a set of values corresponding to the
types in the schema. Creating a new resource involves
initializing a new set of values and placing them in a
persistent store indexed under a new resource name. In
WSRF.NET, the resource name is a WS-Addressing
EndpointReference containing both the service’s URL
and a unique GUID.

WSRF defines the idea that the actual state of the
resource (stored on the service side) is potentially
different than the “view” of the resource state that is
exposed to clients. The client’s view of the state is
therefore a projection or transform of the actual state
into a format which is valid with respect to the
service’s resource schema. In WSRF, this transformed
state is called the Resource Property document (and
individual elements of that document are called
Resource Properties). The schema for the Resource
Property document is part of the service’s WSDL
document. In WSRF.NET, service authors define this
schema using the [ResourceProperty] attribute. This
attribute can be placed on either .NET property
functions or on data members themselves. The effect

1 A single data member may have multiple associated attri-
butes, as shown by the integer “v” having both [Resource] and
[ResourceProperty] attributes

[WSRFPortType(typeof(GetResourcePropertyPortType))]
[WSRFPortType(typeof(ScheduledResourceTerminationPortType))]
[WSRFPortType(typeof(NotificationProducerPortType))]
public class MyService : ServiceSkeleton
{
 [Resource]
 private string[] stringData;

 [Resource]
 [ResourceProperty]
 public int v;

 [ResourceProperty]
 public string Property1
 {
 get { return stringData[0]; }
 }

 [ResourceProperty]
 public string Property2
 {

 get { return stringData[1]; }
 set { stringData[1] = value; }

 }

 public MyService() { // constructor }

 [WebMethod]
 public int MyMethod()
 { // service's methods }
}

Fig. 2 WSRF.NET service
code with attributes

Resource-oriented computing: Design, implementation, and evaluation of WSRF.NET 181

www.manaraa.com

of placing [ResourceProperty] on a .NET property
depends on the definition of that .NET property. If
the .NET property defines a “getter” function, that prop-
erty will be exposed to clients as a ResourceProperty that
can be retrieved by any of the WS-ResourceProperty
specification’s functions (GetResourceProperty, Get-
MultipleResourceProperty or QueryResourceProperty).
Similarly, if the .NET property defines a “setter,” the
ResourceProperty exposed to the client will be modifi-
able using the SetResourceProperty function. In Fig. 2,
Property1 has a “getter,” while Property2 has both a
“getter” and a “setter.” .NET properties provide a
convenient way of transforming the internal state of
a programmatic object into a form for consumption
outside the object and the [ResourceProperty] attribute
leverages this concept, familiar to .NET programmers.
Presumably, each [ResourceProperty]-annotated .NET
property will base its return value on some data
member(s) labeled as [Resource]. However, [Resource-
Property] can be used to compute dynamic values that
are not based on stored state (e.g. the current time).
While [ResourceProperty] attributes most commonly
are used on .NET properties, they can also be placed
directly on data members (as shown on the data
member “v” in Fig. 2). This is a shorthand way of
specifying that no transform should be used when
exposing this value as a Resource Property. In other
words, the value stored for the resource “v” can be
directly accessed by clients.

In addition to defining the concept of stateful
resources, and the exposed view of those resources
based on ResourceProperties, WSRF defines a col-
lection of messages for querying, manipulating, and
discovering resources. Additionally, WSN defines a
number of messages for publish/subscribe messaging.
Most messages are defined in pairs, a request message
made to a WS-Resource, and the response message it
will generate. WSRF places each messages pair def-
inition within a separate WSDL port type definition
(that also contains a Resource Property document
definition). WSRF.NET makes it easy for service
programmers to develop services that respond to these
messages via the [WSRFPortType] attribute.

In ASP.NET, programmers create Web services that
receive and respond to messages by writing functions.
ASP.NET deserializes received messages and turns
them into function invocations. Function results are
then serialized into response messages. WSRF.NET
libraries provide functions that follow the request/

response message patterns for all WSRF and WSN
defined messages. These functions can be included in a
Web service (and hence the ability to respond to these
messages) by placing the [WSRFPortType] attribute
on the Web service class and parameterizing it with the
type of WSRF.NET object that implements the desired
functions. For example, the service in Fig. 2 will
contain the GetResourceProperty port type (meaning
it will respond to the GetResourceProperty message),
the ScheduledTerminationPortType (meaning it will
respond to the SetTerminationTime message) and the
NotificationProducer port type (meaning it will
respond to the Subscribe message). In addition, the
service will also expose any ResourceProperties de-
fined by those port types.

At this point WSRF’s “aggregation model” be-
comes important. In WSRF, a WS-Resource may
respond to messages defined in many different port
types. However, the WS-I Basic Profile does not de-
fine how multiple port types on a single Web service
are to be interpreted. WSRF therefore mandates a
“cut and paste” model of aggregation so that WS-
Resources end up exposing only a single port type.
This means that the WSDL document for a service
must contain a single port type that defines all
messages that the service supports (each message
having been “cut and pasted” from its original port
type definition). In addition, any Resource Properties
defined in the original set of port types must be
combined into a single Resource Property document
that is to be included in the final WSDL document.
For example, the WS-ResourceLifetime specification
defines a ScheduledTermination port type. This port
type defines the SetTermination request/response mes-
sages and two Resource Properties called Termination-
Time and CurrentTime. The WS-ResourceProperties
specification defines a QueryResourceProperties port
type that includes definitions of both the QueryResour-
ceProperties messages and the QueryExpressionDialect
Resource Property. A WS-Resource that supports the
ScheduledTermination and QueryResourceProperties
port types will actually expose a single port type
that responds to SetTerminationTime and QueryRe-
source Properties messages. In addition, that WS-
Resource’s Resource Property document will contain
TerminationTime, CurrentTime and QueryExpression-
Dialect elements. In WSRF.NET, this “cut and paste”
aggregation is handled automatically by tooling
discussed below.

182 G. Wasson, et al.

www.manaraa.com

3.2 WSRF.NET Tooling

Integration with Visual Studio is an important part of
making the WSRF.NET programming experience
easy. WSRF.NET includes tools to allow the Visual
Studio programmer to automatically build and deploy
their resource-oriented service just as they would any
other Web service. These tools, which run after the
Web service code is compiled, rewrite the Web
service to (a) include functions that implement the
methods defined in the port types imported with
[WSRFPortType] and (b) add code to load/store
appropriate [Resource] annotated data members in a
configured database. In addition, a WSDL document
is generated for the service that aggregates the
messages and Resource Properties defined in the
Web service class (and included port types) into a
single document.

The main tool that performs these operations is
called the Port Type Aggregator (PTA). In Visual
Studio, metadata can be associated with any file.
WSRF.NET defines a Boolean metadata tag for Web
service (.asmx) files called “WSRF.” If this tag is set
to “true,” the PTA is automatically run as a post-build
step for that Web service. The PTA works as follows.
Recall that the .NET attributes of any object can be
read through .NET’s reflection API. The PTA uses
reflection on the compiled DLL file for the Web
service to find any attributes used by WSRF.NET. It
then composes a new Web service class based on
what was found. First, this class must include any
methods defined in any port types included by the
[WSRFPortType] attribute. This is done by adding
well-known functions to the new class (with appro-
priate attributes, e.g. [WebMethod]) so that the ASP.
NET infrastructure will expose these methods from
the service. If the port type being imported is one
defined by WSRF or WSN, the function is essentially
a wrapper for code in the WSRF.NET Service
Library. If the port type is one written by the service
author (any Web service can be treated as a port type
and imported into another service – WSRF.NET
simply aggregates their functions together), the
function will wrap service author libraries. This
function wrapping is necessary because each ASP.
NET Web service is a single class whose methods
define the messages the service can process. In order
to expose methods in other libraries, a wrapper must
exist in the exposing Web service. Next, code is

added to each function, whether “imported” by
[WSRFPortType] or not, to retrieve resource state at
the beginning of the method and save resource state at
the end of the method. These loading and saving calls,
implemented by WSRF.NET libraries modify each
function’s control flow so that it is “load resource
state, perform function computation, save resource
state.” The new, modified Web service class is then
written to disk, compiled, and deployed by modifying
the original Web service .asmx file to load the new
service DLL when the service is accessed.

Service WSDL generation leverages the WSDL
generation code of the .NET framework. However,
recall that WSRF defines a <types> section for a
service’s WSDL that contains the schema for the
service’s Resource Property document. Since this
section is not generated by the .NET framework, the
PTA must generate it. The PTA assembles the schema
from the types of the data members annotated as
[ResourceProperty]s, found by reflecting on the Web
service DLL for the [ResourceProperty] attribute.
Note that the actual mapping of Resource Property
names (which appear in the Resource Property
document and are used by clients in, for example, a
GetResourceProperty call) to entities in the Web
service code (either of data members or .NET
properties) is done when the Web service class is first
loaded into memory and this information is then
cached for subsequent accesses.

4 Building Resource-Oriented Systems: How
WSRF.NET Adds Value over .NET

Resource-oriented systems are different than Service-
oriented systems because resource-oriented systems
treat state (or stateful resources) as an architectural
concern rather than an application-specific one. As
such, current Web service programming infrastruc-
tures, such as Microsoft’s .NET Web services, do not
fully address the needs of resource-oriented system
designers. WSRF.NET provides value over standard
Web services by providing (1) standardized interac-
tions for managing stateful resources (as defined by
WSRF), (2) a programming model for managing state
in Web services that insulates the programmer from
the details of the backend store and (3) libraries that
automate common tasks in resource-oriented systems.
While this section argues how WSRF.NET provides

Resource-oriented computing: Design, implementation, and evaluation of WSRF.NET 183

www.manaraa.com

value over standard Web services, this is not a debate
over whether Web services should be stateless or
stateful at the implementation level. We believe that
almost all services will contain internal state, and
Microsoft provides several mechanisms for Web
service programmers to save and recall state within
services. In this section, we compare state manage-
ment in WSRF.NET with state management using
“vanilla” .NET Web services augmented with either
in-web-service-process-memory, external in-memory
session storage (e.g. IIS Sessions or the ASP.NET
State Service) or application specific database code.
In Section 5, we discuss the performance of WSRF.
NET against these alternatives.

4.1 WSRF.NET’s Compliance with Emerging
WSRF / WSN-based Systems

One of the most important advantages that WSRF.
NET provides is an easy way for service authors to
develop services that comply with the WSRF and
WSN specification families. This allows service au-
thors to interact with the emerging WSRF-compliant
services that others are building. Fourteen companies,
including IBM, Intel, HP and Oracle, participated in
the Technical Committee (TC). The WSN specifica-
tions have a similarly strong commercial backing,
such that it is easy to imagine products supporting
WSRF and WSN being released. An implementation
of the Web Services Distributed Management [45]
standard, which relies on WSRF, will likely be the
first such product to appear. The most widely
deployed Grid software, Globus Toolkit [15] version
4 (GT4), also uses WSRF and WSN and a number of
open source implementations of the WSRF/WSN
specifications have emerged [28]. Services based on
WSRF.NET can interoperate with any of these other
commercial or academic services that speak WSRF
and/or WSN. Note that WSRF is not the only
specification for resource-oriented services. WS-Man-
agement [6] has recently been proposed as an
alternative solution to many of the same issues. While
we defer an in-depth discussion of the relationship
between WSRF.NET and WS-Management until
Section 6, we note that, as of today, there exists a
single implementation [31] of WS-Management,
while at least five independent implementations of
WSRF/WSN exist for various platforms [28].

4.2 WSRF.NET’s Resource-Oriented Programming
Environment

Another important advantage of WSRF.NET derives
from its attribute-based programming model. The
interface between Web service and resource state is
extremely important because almost all interactions
between a client and a resource-oriented service result
in interactions between that Web service and some
resource state. Note that in this context, the word
“interface” refers to the way in which the programmer
of a Web service can access/manipulate a stateful
resource, and not necessarily to a literal API. WSRF.
NET’s attribute-based interface provides not only
easy access to resource state, but also masks the
complexity of many of the state management tasks
(e.g. loading, saving, querying). We argue that to
effectively program any resource-oriented system, the
programming environment (the combination of
programming interface and underlying resource man-
agement system) should provide: easy access to
resource state from Web service code; the ability to
load/store multiple resources of a given “type” (i.e.
with a given schema) ; and easy mechanism to define
new resources when programming new Web services.
In the remainder of this section we discuss how these
properties are exhibited by WSRF.NET and how they
are not by any of the “pure Web services” alternatives.

First, in WSRF.NET, resource state is accessed
through typed objects that are member variables of
the Web service class. State is automatically loaded
into these data members and so access to resource
state is as easy as accessing the value of a variable.
This stands in contrast to any of the in-memory
storage mechanisms. These include static variables
used in Web service code (allowing resource state to
be stored in the Web service process itself), IIS
Sessions (which stores data in the IIS process) and the
ASP.NET State Service (which stores data in a
separate “state server” process). Each of these pro-
vides (or can provide) a hashtable that a running Web
service can access and use to store resource state. This
“hashtable interface” to a resource is typeless, i.e. the
hashtable stores generic “objects” (instances of
System.Object in C#, for example). Although the
“object” retrieved from the hashtable may be imme-
diately cast to a specific type (and from then on pro-
vide the benefits of typed programming), the ASP.NET
state service places the burden on the Web service

184 G. Wasson, et al.

www.manaraa.com

programmer to perform this cast and to ensure that only
objects of that type are actually stored in the hashtable.

A second desirable property for resource-oriented
systems is the ability to have multiple resources (each
defined by the same resource schema) accessed via
the same Web service. Recall that a WS-Resource is
the combination of a stateful resource and a Web
service and it is common practice for multiple WS-
Resources to use the same Web service. In fact, one of
the issues with OGSI was the mandate that each
resource be accessed through a separate Web service.
In WSRF.NET, the collection of types of the variables
labeled with the [Resource] attribute define the
resource schema. Independent copies of the values
of these variables therefore represent independent
resources. WSRF.NET automatically creates new
resource instances, and loads/stores previously cre-
ated instanced based on the <ReferenceProperties>
element of the WS-Resource’s EPR. This allows the
<Address> element of the EPR, i.e. the URL of the
Web service, to remain the same for different WS-
Resources and hence the same Web service to serve
multiple resources. The fact that this automatic
management of resource state occurs is masked from
the Web service programmer – they need only place
the [Resource] attribute on appropriate variables and
WSRF.NET handles the rest. Compare this with using
static member variables of the Web service class to
store state. The “static variable” approach is less
appealing because although static variables can
provide a typed interface to resource state (as does
WSRF.NET), simple static types do not allow
multiple instances of the resource to be stored for
the same Web service. In other words, a static integer
is single valued, where a [Resource]-annotated integer
will contain different values based on the value of the
EPR used to access the WS-Resource. Although static
arrays could be used (with each array element holding
the value of a different resource), in the .NET
Framework version 1.1, only fixed length arrays are
typed. In other words, the maximum number of
possible resources must be defined at compile time
in order to have the benefit of a typed interface. Static
hashtables or ArrayLists (dynamically sized arrays)
could be used to store multiple resource instances, but
these too provide an untyped interface.

Managing multiple resource instances per Web
service implies the ability to find the one (or ones) rel-
evant to a service invocation and make them

accessible from the Web service code. WSRF.NET
uses automatically generated XPath [14] and XQuery
[9] queries, where as IIS Sessions and the ASP.NET
State Service find resources based on a session ID
included in the invocation message. Other methods
require the web service programmer to manually find
the appropriate resource. In addition, in practice, pro-
grammers create some operations that do not reference
a single resource, but are meant to effect multiple re-
sources. WSRF.NETcan use the query capability of the
underlying database to find sets of resources matching
many different criteria. When using IIS Session or the
ASP.NET State Service, a web service only has access
to one session at a time and therefore cannot effect
multiple resources with a single invocation.

A final property of a resource-oriented system is the
ease with which new resources can be coded when
programming a new Web service. In other words,
programming a new WS-Resource should involve as
little as possible beyond programming a new Web
service. In WSRF.NET, creating a new “type” of
stateful resource (i.e. a new resource schema) is as easy
as applying the [Resource] attribute to appropriate
member variables of the new service. Compare this
with managing resource state with service-specific
database code. Custom database code could be written
for each Web service to save/load resource state. For a
database based on tables (e.g. an SQL database),
although many layouts are possible, it is easy to
imagine using a separate table for each service. The
types of all the columns of this table define the
resource schema and provide the service programmer
with typed access to resource state. Creating a new
instance of the resource involves creating a new row in
the table. However, each new service will require
creating a new table to match the new resource
schema. This, in turn, requires the Web service author
to have access to the underlying database (linking the
roles of Web service programmer and database
administrator) as well as an understanding of data-
base-specific table creation mechanisms. Of course,
resources with many different schemas could be stored
in the same table if they were stored as binary blobs,
but this impedes the service author’s ability to query
the table for resources whose state matches particular
parameters. XML databases can overcome the need to
create a new table for each new type of resource
because XML documents, by their nature, need not
assume a structure for the data they contain. This

Resource-oriented computing: Design, implementation, and evaluation of WSRF.NET 185

www.manaraa.com

allows them to contain the serialized state of any
resource and, in turn, multiple services to use the same
XML database as a backend store. However, the result
of querying an XML database is typically an XML
document. This means the service author must write
additional code to deserialize the document and make
its values available. This is similar to (in fact more
complex than) the problem with the hashtable inter-
face, it works, but it requires extra effort to get at
resource state as typed quantities and to ensure that
only proper entities (those matching the resource
schema) are stored. WSRF.NET automatically deseri-
alizes the XML documents it retrieves from its back-
end database and makes the values available through
data members of the Web service. No additional code
must be written by the Web service author.

In addition to not meeting the properties mentioned
above, none of the alternative stateful resource mech-
anisms discussed consider resources that are not pure
data resources. While it is common for a stateful
resource to be data, WSRF.NET easily allows other
notions of resource. For example, WSRF.NETcontains
a process forking system that interfaces with running
Windows processes. Using this system, Web service
authors can create resources that are processes (i.e.
WS-Resources which are web addressable representa-
tions of executing processes) simply by placing the
[Resource] attribute on a member variable of WSRF.
NET’s Process type. In addition, WSRF.NET defines
the IResource interface which provides an extensible
system for accessing resources. Any Web service
member variable that implements the IResource
interface (and is annotated with the [Resource]
attribute) will automatically be loaded, stored, created
and destroy through function calls on the IResource
interface by WSRF.NET. By providing custom imple-
mentations of these functions, almost any resource can
be addressed by WSRF.NET – including legacy
resources (e.g. pre-existing databases).

4.3 WSRF.NET’s Automation of Common Tasks

In addition to providing a programming model for
resource-oriented services, WSRF.NET provides class
libraries that automate certain common tasks for
services and clients. The first of these is notification.
Notification, via WS-Notification, is well supported
in WSRF.NET. On the service side, all a programmer
needs to do to send a notification message is to declare

a ProducibleTopic object, using an XML qualified
name that will be the topic name [43], and then call the
ProducibleTopic’s notify() method, passing an object
that will be serialized as the body of the notification
message. WSRF.NET will automatically communi-
cate with a subscription manager service to determine
the Endpoint information for all clients that have
subscribed to the given topic and send the message to
each. WSRF.NET supports topics that follow both the
“simple” and “concrete” topic naming conventions
defined in WS-Topics. Receiving a notification mes-
sage on the client side is similarly easy. WSRF.NET
provides a NotificationListener object which can
receive notifications over HTTP without the use of
IIS, Microsoft’s Web server. In other words, arbitrary
client binaries (and not just Web services sitting
behind the web server) can receive notifications. In
order to have a client receive notifications, the first
step is often to subscribe the client to the desired topic
(s) on the service(s) that will generate the notifica-
tions. This is done using the standard WS-Notification
Subscribe message [21] and can be sent using WSRF.
NET’s NotificationProducerProxy. Now the client
must create a NotificationListener and describes the
topics it should listen for (note that even if sub-
scriptions are not being used, the client can use the
NotificationListener to filter notification message).
Topics of interest are described by topic expressions.
The meaning of a topic expression depends on the
topic space of the notifying service. For example, the
topic expression “A” could mean the listener is
interested just in messages about topic “A,” or, if
the topic space is hierarchical, “A” could mean that
the client wishes to receive messages about topics “A/
B” and “A/C.” Creating a topic expression for a
WSRF.NET client is simply a matter of creating a
TopicExpression object with the appropriate XML
qualified name. Then an event handler is registered
with the TopicExpression that will be raised whenever
a notification on the specified topic occurs.

A second common operation for a service is to
interact with a running process. These could either be
processes that are being presented to clients as WS-
Resources or they could be worker processes used by
the Web service to perform its task. Typical oper-
ations include starting a process, possibly terminating
a process before it exits normally, knowing when the
process completes and determining the state of the
process (either when running, e.g. PID, or after termi-

186 G. Wasson, et al.

www.manaraa.com

nation, e.g. exit code). While the .NET Process object
can interface a Web service to a currently running
process, WSRF.NET ProcSpawn service can provide
these capabilities for processes which have also exited.
In other words, the .NET Process object cannot bind
to any process which has completed because the
operating system automatically cleans up that process’
information. The WSRF.NET ProcSpawn service, on
the other hand, is a Windows service (not a Web ser-
vice) that installs along with WSRF.NET. This service
is used by WSRF.NET Web services to launch and
monitor processes on a single machine. Because the
ProcSpawn service remains in memory (as opposed to
the Web service instance which is dynamically created
and then destroyed for every invocation), it can
continue to hold Windows handles to processes and
therefore access information about them even after
they terminate. In addition, the ProcSpawn service can
notify (using WS-Notification) a Web service when a
given process completes. The interface to the Proc-
Spawn service is via the WSRF.NET ProcessHandle
object. By placing the [Resource] attribute on an object
of this type, a WSRF.NET service can use the
ProcSpawn service to automatically create a Web
service accessible binding to the running (or exited)
process whenever a method invocation occurs. There-
fore, it is easy to use this capability to expose a process
as (or as part of) a WS-Resource.

Another useful mechanism provided by WSRF.NET
is the ability for services to easily initialize new WS-
Resources. While the WSRF specifications do not
define any particular message by which a client creates
a new WS-Resource (this was thought to be too
application specific to be standardized), WSRF.NET
does provide methods that the service author can use to
interact with the backend resource store. Each port
type in a WSRF.NET service defines an InitResource()
method which is used to initialize all [Resource] an-
notated member variables of that port type. The base
type for all WSRF.NET services defines a create()
function which will invoke the InitResource() method
on all port types included in a service using the
[WSRFPortType] attribute. The effect of calling the
create() method from within service code is that initial
values for all [Resource] annotated members are set.
These values will then be stored to the backend data
store when the current client invocation completes.
So, while the service author is free to choose the exact
signature for the “create” function that is exposed to

clients, internally, all that function needs to do is to
call the create() method. In addition, WSRF.NET
provides an implementation of a port type called the
GCGResourceFactoryPortType. Placing the attribute
[WSRFPortType(typeof(GCGResourceFactoryPort-
Type))] on a service class automatically provides a
web accessible Create() method that clients may call.
When using this port type, each other port type in the
WSRF.NET service can be annotated with a [Resource
InitializerType] attribute. This attribute defines the data
type of an object used to initialize that port type. In
other words, the data type passed as a parameter to
that port type’s InitResource() method. When a client
calls the GCGResourceFactoryPortType’s Create()
method, they pass in a document containing serialized
versions of all the types specified in a service’s
[ResourceInitializerType] attributes. WSRF.NET will
automatically deserialize these and pass them to the
correct InitResource() method. This resource creation
mechanism is both simple and powerful. In general, it
can be used to pass arbitrary data to a service that it
can use in creating a new resource. In its simplest
form (where no client data is needed), all that is
required is for a single [WSRFPortType] attribute to
be placed on the Web service class. The benefit of
providing this method (even though it is not defined
by WSRF) is that it allows the service author to deal
with programming language types instead of XML
messages. We are currently developing tools to allow
clients to automatically generate the document that is
passed to the GCGResourceFactoryPortType based on
the attributes of the service.

5 Evaluation

To evaluate WSRF.NET, we consider the fundamental
issue to be: to what extent does the programmability
(both programming-language abstractions and com-
pile-time tooling) and improved run-time persistence/
management of state of WSRF.NET outweigh the run-
time overhead incurred to support such abstractions?
Unfortunately, concepts such as programmability are
difficult to quantitatively evaluate, so this equation
does not reduce to a simple comparison of two similar
metrics. Instead, we have used Section 4 to (in part)
qualitatively argue that WSRF.NET makes it easy to
implement resource-oriented services as compared to
alternative resource storage/maintenance mechanisms.

Resource-oriented computing: Design, implementation, and evaluation of WSRF.NET 187

www.manaraa.com

In this section, we quantitatively evaluate the run-time
performance of using WSRF.NET. While this infor-
mation cannot be used to answer the question posed in
the first sentence of this section, we argue that the core
WSRF.NET primitives incur negligible overhead com-
pared to typical domain-specific resource manipulation
operations.

Additionally, an XML database is typically con-
figured as WSRF.NET’s back-end resource store
while several of the alternate storage mechanisms,
static hashtables, IIS session state and the ASP.NET
State Service, store data in RAM. Fundamentally, this
means WSRF.NET provides a level of data persis-
tence that in-memory techniques do not, but it also
means that a performance comparison between
WSRF.NET and these alternatives involves a compar-
ison between RAM and disk I/O. While there is no
quantitative measure of persistence, we take it as an
axiom that persistence is crucial for any long-lived,
widely-distributed system. In other words, hardware
failure in a large, long-running system will occur and
simple RAM-based storage is insufficient.

To evaluate the run-time overhead of WSRF.NET
and the alternatives, a series of tests were run
involving a client making an invocation on a Web
service. Both client and server ran on the same
machine and the times reported are from the time
the client sends the invocation message to the time the
client receives the response from the service. The tests
are:

& Create test – the client invokes a method on the
service that creates a new instance of a resource
and saves it to the back-end store. The EPR for
the new WS-Resource is returned to the client.

& Query test – the client accesses a WS-Resource
causing the system to perform a query to find the
appropriate resource in its store and load the state
into memory (if appropriate). The service returns
the first byte of the resource state.

& Read test – the client accesses a WS-Resource as
in the query test, but this test is run after the query
test allowing the systems to show their caching
behavior (if any). Return value is the same.

& Write test – the client accesses a WS-Resource
and modifies its state (randomly). This causes the
system to have to write the new resource value to
the backend store. The service sends an ACK to
the client.

& Delete test – the client asks the service to destroy
a particular WS-Resource. This involves the
service finding the appropriate resource (via a
query) and then removing it from the backend
store.

The five types of tests were run for resources sizes
of increasing orders of magnitude from 10 B to
100 kB with 100 resources at each size. Another
battery of the five tests was run for increasing orders
of magnitude of number of resources from 10 to
100 K resources, each of 100 B. The experiments
were run on dual AMD Opteron 240 (1.4 GHz)
processor machines, with 2 GB RAM, running
Windows 2003 Enterprise Edition (Service Pack 1).
Numbers reported for all tests except Create and
Delete are averages from 1,000 invocations. Create
and Delete times are averages from the creation or
deletion of the number of resources uses in the test.
For example, in tests with 100 resources, the times are
averages over 100 operations; in tests with 100 K
resources, the times are averages over 100 K oper-
ations. The configuration of the various systems is as
follows. WSRF.NET was configured to use the
Xindice database. The ASP.NET State Service was
configured to store state in the ASP.NET State Service
process. The “Custom DB Code” used SQLServer
Express Edition 2005 and SQL statements to load/
store non-XML data. The “Static Hashtable” config-
uration involves a Web service which declares a static
Hashtable object in the Web service class and
therefore, even though ASP.NET destroys the in-
stance of the Web service after each client invocation,
the static data remains in memory. The “IIS Session
State” configuration uses IIS sessions to make a
hashtable (managed by IIS) accessible to the Web
service. The contents of this hashtable are based on a
session ID included with the client request.

Figures 3, 4, 5, 6, 7 show the results of the Create,
Query, Read, Write and Delete tests. Note that all
graphs are log scale.

From Fig. 3, it can be seen that all systems retain
their “create performance” for small resources as the
number of resources increase, but begin to take
exponentially more time as the size of the resources
increases. The difference between WSRF.NET and all
but the “Custom DB Code” case is due to the
difference between in-memory hashtables and data-
bases writing to disk. The difference between WSRF.

188 G. Wasson, et al.

www.manaraa.com

NET and the Custom DB Code configuration is due to
the difference between serializing and writing XML
data and writing data to an SQL table. While the
Custom DB Code is faster, it has the limitations
discussed in Section 4, namely that new code and new
database tables must be created for each new Web
service and resource type. The larger than expected
bars for WSRF.NET and the Custom DB Code for the
100×10-B case appear to be caused by a small
number of anomalously high creation times. In the
Query Test of Fig. 4 we can see that WSRF.NET’s
cost is impacted more by large numbers of resources
than by large resource size. The alternatives retain
relatively constant performance due to the constant

time nature of the hashtable lookup that can be used
to find the resource reference by an invocation. The
fact that the alternatives perform somewhat worse for
large size resources is expected since increased time is
needed to transfer the resource state to the Web
service from an external process (such as the ASP.
NET State Service) or from the SQL database. The
Read Test of Fig. 5 shows that WSRF.NET’s per-
formance improves dramatically for WS-Resources
accesses after the first (due to WSRF.NET’s write-
through cache). The difference in performance with
the alternatives is due to the fact that, after the
invocation, the resource must be serialized to check if
it has changed with respect to the cached copy. The

Creation Times

1

10

100

1000

10
x1

00

10
0x

100

10
00

x1
00

10
Kx1

00

10
0K

x1
00

10
0x

10

10
0x

100

10
0x

100
0

10
0x

10K

10
0x

100
K

Number of resources x resource size (bytes)

T
im

e
(m

s)

Custom DB Code

Static Hashtable

ASP.NET State Service

IIS Session State

WSRF.NET (Xindice)

Fig. 3 Timing for the
Create test

Resource Query Times

1

10

100

1000

10000

10
x1

00

10
0x

100

10
00

x1
00

10
Kx1

00

10
0K

x1
00

10
0x

10

10
0x

100

10
0x

100
0

10
0x

10K

10
0x

100
K

Number of resources x size of resource (bytes)

T
im

e
(m

s)

Custom DB Code

Static Hashtable

ASP.NET State Service

IIS Session State

WSRF.NET (Xindice)

Fig. 4 Timing for the Que-
ry test

Resource-oriented computing: Design, implementation, and evaluation of WSRF.NET 189

www.manaraa.com

Write Test of Fig. 6 shows similar results to the Read
Test, with both WSRF.NET and the Custom DB Code
performing slower as the size of resources increases.
This is expected since both of these systems must
write data to the file system. Finally, the Delete Test
of Fig. 7 shows performance for WSRF.NET that is
similar to the Query Test. This is because even if the
resource is cached, a query must be done on the
database to find the XML document that must be
removed.

While WSRF.NET’s overhead is greater than the
other alternative technologies, we believe that it
typically represents only a small portion of the time

that would be used by the domain science of a real
application. Consider a medical data mining applica-
tion which looks through patient records to find
suitable candidates for a new drug treatment study.
If these records are being exposed as WS-Resources,
the application might access the resource (read it into
memory), compute how well the patient matches the
studies criteria and then, after examining all the re-
cords, go back and write information about the
quartile into which the patient fell into their record.
Assume the data mining application runs for 10 min
and accesses 100 resources. We can model WSRF.
NET’s overhead for this as 100 queries (to load

Resource Write Times

1

10

100

1000

10
x1

00

10
0x

100

10
00

x1
00

10
Kx1

00

10
0K

x1
00

10
0x

10

10
0x

100

10
0x

100
0

10
0x

10K

10
0x

100
K

Number of resources x size of resource (bytes)

T
im

e
 (

m
s
)

Custom DB Code

Static Hashtable

ASP.NET State Service

IIS Session State

WSRF.NET (Xindice)

Fig. 6 Timing for Write test

Resource Read Times

1

10

100

10
x1

00

10
0x

100

10
00

x1
00

10
Kx1

00

10
0K

x1
00

10
0x

10

10
0x

100

10
0x

100
0

10
0x

10K

10
0x

100
K

Number of resources x size of resource (bytes)

T
im

e
 (

m
s
)

Custom DB Code

Static Hashtable

ASP.NET State Service

IIS Session State

WSRF.NET (Xindice)

Fig. 5 Timing for the Read
test

190 G. Wasson, et al.

www.manaraa.com

resources) and 100 writes. For resource size (patient
record size) of 100 B, resource queries take 13.7 ms
on average and writes take 13.6 ms on average, as
shown in Fig. 4 and Fig. 6. Therefore, the total over-
head would be (100 * (13.7+13.6 ms)), assuming
that no resources are accessed multiple times and
therefore not read from the cache. This means WSRF.
NET’s overhead for a 10-min run would be (100 *
(13.7+13.6 ms)) / (60 s/min *10 min), or 0.46%.
Table 1 shows the percentage of WSRF.NET over-
head for all test scenarios in which there are at least
100 resources. The top row shows the number of
resources × the size of resources (in bytes). The
bottom row shows the percentage of a 10-min run that
is occupied by WSRF.NET.

We can see that WSRF.NET’s overhead is very
small for all but the cases with large numbers of
resources or when the resources are of large size. This
is particularly relevant when considering that the
other mechanisms for state management do not
provide WSRF.NET’s persistence of state, nor
WSRF.NET’s ease of programming. Obviously as
application run times grow larger (many jobs run on
today’s computational Grids consume hours of days
of CPU time), WSRF.NET’s overhead drops consid-

erably. In fact, it is precisely for such long-running
jobs that WSRF.NET’s database-backed resource
management system is particularly important; days
of work should not be lost due to a simple power
failure.

6 Conclusion

WSRF.NET provides substantial value in the devel-
opment of resource-oriented systems. WSRF.NET
augments the standard Microsoft .NET Web services
platform with WSRF-compliance, a resource-oriented
programming model and set of useful class libraries.
While WSRF.NET provides the ability to build
resource-oriented systems on .NET, it should be noted
that there are alternatives systems for other platforms.
Most notably, the Globus Toolkit version 4 (GT4)
[19] provides both Java and C toolkits for developing
WSRF/WSN-compliant services. WSRF::Lite [48]
and pyGridWare [40] provide Perl and Python
programming environments for WSRF/WSN. While
many of these systems can run on Windows (fre-
quently with reduced functionality as compared to
their Linux implementations), none leverage the .NET

Resource Delete Times

1

10

100

1000

10
x1

00

10
0x

100

10
00

x1
00

10
Kx1

00

10
0K

x1
00

10
0x

10

10
0x

100

10
0x

100
0

10
0x

10K

10
0x

100
K

Number of resources x size of resource (bytes)

T
im

e
(m

s)

Custom DB Code

Static Hashtable

ASP.NET State Service

IIS Session State

WSRF.NET (Xindice)

Fig. 7 Timing for Delete
test

Table 1 Percent overhead for WSRF.NET mechanisms in 10 minute application

WSRF.NET overhead

100×100 1,000×100 10K×100 100K×100 100×10 100×1000 100×10 K 100×100 K
0.6% 0.45% 2.7% 21.7% 0.49% 0.64% 1.35% 16.1%

Resource-oriented computing: Design, implementation, and evaluation of WSRF.NET 191

www.manaraa.com

framework. A full comparison (both qualitative and
quantitative) of these systems and WSRF.NET can be
found in [28].

Interest in resource-oriented systems is growing. In
2004, Microsoft, Intel, Sun and others introduced
WS-Management [6]. WS-Management is itself a set
of conventions on using several other specifications
including WS-Transfer [3], WS-Eventing [11], WS-
Enumeration [2] and WS-Addressing [24]. WS-
Transfer defines Get, Put, Create and Delete messages
for resources (i.e. it defines the CRUD pattern for
Web services). WS-Enumeration provides a mecha-
nism for clients to iterate through data sets managed
by services. WS-Eventing defines an asynchronous,
topic-based, messaging system and WS-Addressing
presents a standardized way of naming resources.
While on the surface, WSRF and WS-Management
have approximately the same functionality, there are
differences. For example, WSRF has no analog for WS-
Management’s WS-Enumeration. WS-Management,
on the other hand, has no analog for the lease-based
lifetime defined by WSRF. WS-Management defines
a standard “Create” message, while WSRF believes
such a message to be too application specific to be
meaningfully standardized. WSRF defines a standard
mechanism for clients to get the exposed schema of a
resource, via the Resource Property document. WS-
Management contains no standard mechanism for
accessing resource schema, believing that that is an
application-level concern. While it is difficult to
definitively determine that one set of specifications
is superior to the other, some prelimary comparison
work has been done between WSRF/WSN and WS-
Transfer/WS-Eventing [27].

Currently, the relationship between WS-Management
(and its constituent specification) and WSRF/WSN is
unclear. One possibility is that in the future the two
standards will merge, taking the best of both and
providing a unified structure for the Web services
industry. Another possibility is that both standards
will exist simultaneously and different systems will
utilize the different technologies. While many in the
Grid community are working on the former, the later
is not completely outside the realm of possibility.
WSRF/WSN has several implementations that use a
variety of programming languages/environments and
run on a variety of OSs/architectures. While only one
implementation of WS-Management exists [31], Intel
has said that they will embed WS-Management in

their hardware to make it easier to manage their
devices. This may provide strong impetus for others
to build systems using WS-Management.

Regardless of which set of specifications gains the
mostly widespread use, we believe there is a place for
the technology of WSRF.NET. Of course, a toolkit
targeted as a different set of specifications would
provide compliance with those new specifications
(not WSRF), but WSRF.NET’s programming model
and class libraries should be advantageous for
programming any resource-oriented system. One of
the main future work tasks for the WSRF.NET project
is to take the lessons learned in developing WSRF.
NET and apply them to either a toolkit that provides
the functionality of WS-Management, or one that is
agnostic of WSRF/WS-Management (one that, for
example, has a compile-time switch that determines
whether the resulting service will comply with WSRF
or WS-Management). Another future direction is
continuing to expose upcoming Microsoft technolo-
gies in a way that is convenient for programming
resource-oriented systems. The Windows Communi-
cation Foundation (WCF), previously code-named
“Indigo,” and the next generation of the Windows
operating system, code-named “Longhorn” represent
the evolution of both Windows and the .NET
platform. Since both will be part of the Microsoft
Web services platform, it is natural that WSRF.NET
should embrace both. Another important piece of
future work, which has already begun, is to provide
more Grid-specific functionality on top of WSRF.
NET. We have begun developing services that comply
with both OGSA and the Globus protocols (e.g.
GRAM, GridFTP).

WSRF.NET has a broad user community. To date,
downloads from more than 1,440 unique IP addresses,
representing 44 countries and every continent, have
been recorded. WSRF.NET has also been used as the
basis for a number of other projects, such as the UVA
Campus Grid [26], OGSA Byte-IO Service [12],
OGSA Basic Execution Service (BES) [8], and the
Akogrimo [1] and GRASP projects [23]. WSRF.NET
is providing clear, measurable value to the resource-
oriented systems community.

Acknowledgements This research was supported in part by
the US National Science Foundation under grants ACI-
0203960, SCI-0438263, SCI-0426972, the Department of
Energy Early Career program (to Humphrey), the San Diego
Supercomputing Center and Microsoft Corporation.

192 G. Wasson, et al.

www.manaraa.com

References

1. Akogrimo Project: Access to Knowledge through the Grid
in a Mobile World. http://www.mobilegrids.org/. Cited
December (2005)

2. Alexander, J., Box, D., Cabrera, L., Chappell, D., Daniels, G.,
Geller, A., Kaler, C., Orchard, D., Sedukhin, I., Simek, M.,
Theimer, M.:Web Services Enumeration (WS-Enumeration).
http://msdn.microsoft.com/library/en-us/dnglobspec/html/
ws-enumeration.pdf. September (2004)

3. Alexander, J., Box, D., Cabrera, L., Chappell, D., Daniels,
G., Geller, A., Janecek, R., Kaler, C., Lovering, B.,
Orchard, D., Schlimmer, J., Sedukhin, I., Shewchuk, J.: Web
Services Transfer (WS-Transfer). http://msdn.microsoft.com/
library/en-us/dnglobspec/html/ws-transfer.pdf. September
(2004)

4. Apache Software Foundation: Apache Tomcat. http://
tomcat.apache.org/. Cited February (2005)

5. Apache Software Foundation: Apache Xindice. http://xml.
apache.org/xindice/. Cited February (2005)

6. Arora, A., Cohen, J., Davis, J., Golovinsky, E., He, J.,
Hines, D., McCollum, R., Milenkovic, M., Montgomery,
P., Schlimmer, J., Suen, E., Tewari, V.: Web Services
Management (WS-Management). http://www.intel.com/
technology/manage/downloads/ws_management.pdf. Feb.
(2005)

7. Ballinger, K., Ehnebuske, D., Gudgin, M., Nottingham, M.,
Yendluri, P.: WS-I Basic Profile 1.0. Web Services
Interoperability Organization. http://www.ws-i.org/Pro
files/BasicProfile-1.0-2004-04-16.html. April 16, (2004)

8. Basic Execution Service (BES) Working Group: Global
Grid Forum. https://forge.gridforum.org/projects/ogsa-bes-
wg/. November (2005)

9. Boag, S., Chamberlin, D., Fernandez, F., Florescu, D.,
Robie, J., Simeon, J. (eds.): XQuery 1.0: An XML Query
Language. W3C. http://www.w3.org/TR/2005/CR-xquery-
20051103/. November 3, (2005)

10. Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion,
M., Ferris, C., Orchard, D.: Web Services Architecture. W3C
Working Group Note. http://www.w3.org/TR/2004/NOTE-
ws-arch-20040211/. February (2004)

11. Box, D., Cabrera, L., Critchley, C., Curbera, F., Ferguson,
D., Geller, A., Graham, S., Hull, D., Kakivaya, G., Lewis,
A., Lovering, B., Mihic, M., Niblett, P., Orchard, D.,
Saiyed, J., Samdarshi, S., Schlimmer, J., Sedukhin, I.,
Shewchuk, J., Smith, B., Weerawarana, S., Wortendyke, D.:
Web Services Eventing (WS-Eventing). http://ftpna2.bea.
com/pub/downloads/WS-Eventing.pdf. August (2004).

12. Byte-IO Working Group. Global Grid Forum. https://forge.
gridforum.org/projects/byteio-wg/. October (2005)

13. Chappell D., Liu, L. (eds): Web Services Brokered Notifi-
cation 1.3 (WS-BrokeredNotification). OASIS WSN-TC.
http://www.oasis-open.org/committees/download.php/
13485/wsn-ws-brokered_notification-1.3-spec-pr-01.pdf.
July 7 (2005)

14. Clark, J., DeRose, S. (eds): XML XPath Lanaguage
(XPath) Version 1.0. W3C. http://www.w3.org/TR/xpath.
November 16 (1999)

15. Foster, I., Kesselman, C.: Globus: a metacomputing infrastruc-
ture toolkit. Int. J. Supercomput. Appl. 11(2), 115–128 (1997)

16. Foster, I., Kesselman, C., Nick, J., Teucke, S.: The
Physiology of the Grid: An Open Grid Services Architec-
ture for Distributed Systems Integration. Open Grid
Services Infrastructure WG – Global Grid Forum. (2002)

17. Foster, I., Kesselman, C., Nick, J., Teucke, S.: Grid services
for distributed systems integration. IEEE Computer 35(6),
37–46 (2002)

18. Global Grid Forum. http://www.ggf.org (2005)
19. Globus Project: Globus Toolkit 4. http://www.globus.org

(2005)
20. Graham, S., Treadwell, J. (eds): Web Services Resource

Properties 1.2 (WS-ResourceProperties). OASIS WSRF-
TC. http://docs.oasis-open.org/wsrf/wsrf-ws_resource_
properties-1.2-spec-pr-02.pdf. Oct. 6 (2005)

21. Graham, S., Hull, D., Murray, B. (eds): Web Services Base
Notification 1.3 (WS-BaseNotification). OASIS WSN-TC.
http://www.oasis-open.org/committees/download.php/
13488/wsn-ws-base_notification-1.3-spec-pr-01.pdf. July 7
(2005)

22. Graham, S., Karmarkar, A., Mischkinsky, J., Robinson, I.,
Sedukhin, I.: Web Services Resource 1.2 (WS-Resource).
OASIS-WSRF TC. http://docs.oasis-open.org/wsrf/wsrf-
ws_resource-1.2-spec-pr-02.pdf. October 6 (2005)

23. GRASP Project: Grid Application Service Provision. http://
eu-grasp.net/english/default.htm. January (2005)

24. Gudgin M., Hadley, M. (eds): Web Service Addressing 1.0 –
Core. W3C Working Draft. http://www.w3.org/TR/2005/
WD-ws-addr-core-20050331/. March 31 (2005)

25. Humphrey, M., Wasson, G.: Architectural foundations of
WSRF.NET. International Journal of Web Services Re-
search 2(2), 83–97 (2005). April–June (2005)

26. Humphrey, M., Wasson, G.: The University of Virginia
campus Grid: integrating grid technologies with the campus
information infrastructure. 2005 European Grid Conference
(ECG 2005), Amsterdam, The Netherlands, Feb 14–16
(2005)

27. Humphrey, M., Wasson, G., Kiryakov, Y., Park, S., Del
Vecchio, D., Beekwilder, N., Gray, J.: Alternate Software
Stacks for OGSA-based Grids. Proceedings of Super
Computing 2005. Seattle, WA. Nov. 12–18 (2005)

28. Humphrey, M., Wasson, G., Gawor, J., Bester, J., Lang, S.,
Foster, I., Pickles, S., McKeown, M., Jackson, K., Boverhof,
J., Rodriguez, M., Meder, S.: State and Events for Web
Services: A Comparison of Five WS-Resource Framework
and WS-Notification Implementations. Proceedings 14th
International Symposium on High-Performance Distributed
Computing (HPDC-14). Research Triangle Park, NC24–27
July (2005)

29. Humphrey, M., Wasson, G., Morgan, M., Beekwilder, N.:
An Early Evaluation of WSRF and WS-Notification via
WSRF.NET. 2004 Grid Computing Workshop (associated
with Supercomputing 2004). Nov 8 2004, Pittsburgh, PA.
(2004)

30. IBM. WebSphere: http://www-306.ibm.com/software/ web
sphere/. (2005)

31. Java.NET: Wiseman: A Java Implementation of WS-Man-
agement. https://wiseman.dev.java.net/. January (2005)

32. Liu, L., Meder, S. (eds.): Web Services Base Faults 1.2 (WS-
BaseFaults). OASIS WSRF-TC. http://docs.oasis-open.org/
wsrf/wsrf-ws_base_faults-1.2-spec-pr-02.pdf. Oct. 7, (2005)

Resource-oriented computing: Design, implementation, and evaluation of WSRF.NET 193

http://www.mobilegrids.org/
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-enumeration.pdf
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-enumeration.pdf
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-transfer.pdf
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-transfer.pdf
http://tomcat.apache.org/
http://tomcat.apache.org/
http://xml.apache.org/xindice/
http://xml.apache.org/xindice/
http://www.intel.com/technology/manage/downloads/ws_management.pdf
http://www.intel.com/technology/manage/downloads/ws_management.pdf
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
https://forge.gridforum.org/projects/ogsa-bes-wg/
https://forge.gridforum.org/projects/ogsa-bes-wg/
http://www.w3.org/TR/2005/CR-xquery-20051103/
http://www.w3.org/TR/2005/CR-xquery-20051103/
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://ftpna2.bea.com/pub/downloads/WS-Eventing.pdf
http://ftpna2.bea.com/pub/downloads/WS-Eventing.pdf
https://forge.gridforum.org/projects/byteio-wg/
https://forge.gridforum.org/projects/byteio-wg/
http://www.oasis-open.org/committees/download.php/13485/wsn-ws-brokered_notification-1.3-spec-pr-01.pdf
http://www.oasis-open.org/committees/download.php/13485/wsn-ws-brokered_notification-1.3-spec-pr-01.pdf
http://www.w3.org/TR/xpath
http://www.ggf.org
http://www.globus.org
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-pr-02.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-pr-02.pdf
http://www.oasis-open.org/committees/download.php/13488/wsn-ws-base_notification-1.3-spec-pr-01.pdf
http://www.oasis-open.org/committees/download.php/13488/wsn-ws-base_notification-1.3-spec-pr-01.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-pr-02.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-pr-02.pdf
http://eu-grasp.net/english/default.htm
http://eu-grasp.net/english/default.htm
http://www.w3.org/TR/2005/WD-ws-addr-core-20050331/
http://www.w3.org/TR/2005/WD-ws-addr-core-20050331/
http://www-306.ibm.com/software/websphere/
http://www-306.ibm.com/software/websphere/
https://wiseman.dev.java.net/
http://docs.oasis-open.org/wsrf/wsrf-ws_base_faults-1.2-spec-pr-02.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_base_faults-1.2-spec-pr-02.pdf

www.manaraa.com

33. Maquire, T., Snelling, D., Banks, T. (eds.): Web Services
Service Groups 1.2 (WS-ServiceGroups). OASIS WSRF-
TC. http://docs.oasis-open.org/wsrf/wsrf-ws_service_
group-1.2-spec-pr-02.pdf. Oct. 7 (2005)

34. Microsoft. ASP.NET: http://asp.net/Default.aspx?tab
index=0&tabid=1. (2005)

35. Microsoft. SQL Server 2005: http://www.microsoft.com/
sql/default.mspx. (2005)

36. Microsoft. .NET Framework.: http://www.microsoft.com/
net. (2005)

37. Microsoft: Web Services Enhancements (WSE). http://
msdn.microsoft.com/webservices/webservices/building/
wse/. (2005)

38. Mono Project: Mono, http://www.mono-project.com/
Main_Page. (2005)

39. Open Grid Services Architecture Global Grid Forum.
https://forge.gridforum.org/projects/ogsa-wg. (2005)

40. pyGridWare: Python Web Services Resource Framework.
http://dsd.lbl.gov/gtg/projects/pyGridWare/. (2005)

41. Srinivasan, L., Banks, T. (eds.): Web Services Resource
Lifetime 1.2 (WS-ResourceLifetime). OASIS WSRF-TC.
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_lifetime-
1.2-spec-pr-02.pdf. Oct. 7 (2005)

42. Teucke, S., Czajkowoski, K., Foster, I., Frey, J., Graham,
S., Kesselman, C., Maquire, T., Sandholm, T., Snelling, D.,
Vanderbilt, P.: Open Grid Services Infrastructure 1.0.
OGSI-WG: Global Grid Forum. http://www-unix.globus.
org/tool kit/draft-ggf-ogsi-gridservice-33_2003-06-27.pdf.
(2003)

43. Vanbenepe, W. (ed.): Web Services Topics 1.2 (WS-
Topics). OASIS WSN-TC. http://docs.oasis-open.org/wsn/
2004/06/wsn-WS-Topics-1.2-draft-01.pdf. July 22 (2004)

44. Wasson, G.: WSRF.NET Programmer’s Reference Manual.
http://www.cs.virginia.edu/~gsw2c/WSRFdotNet/WSRFdot
Net_programmers_reference.pdf. August 23 (2005)

45. Web Services Distributed Management (WSDM): OASIS
WSDM Technical Committee. http://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=wsdm. (2005)

46. Web Services Resource Framework (WSRF): OASIS
WSRF Technical Committee. http://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=wsrf. (2005)

47. Web Services Notification (WSN): OASIS WSN Technical
Committee. http://www.oasis-open.org/committees/
tc_home.php?wg_abbrev=wsn. (2005)

48. WSRF::Lite - Perl Grid Services. http://www.sve.man.ac.
uk/Research/AtoZ/ILCT (2005)

194 G. Wasson, et al.

http://docs.oasis-open.org/wsrf/wsrf-ws_service_group-1.2-spec-pr-02.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_service_group-1.2-spec-pr-02.pdf
http://asp.net/Default.aspx?tabindex=0&tabid=1
http://asp.net/Default.aspx?tabindex=0&tabid=1
http://www.microsoft.com/sql/default.mspx
http://www.microsoft.com/sql/default.mspx
http://www.microsoft.com/net
http://www.microsoft.com/net
http://msdn.microsoft.com/webservices/webservices/building/wse/
http://msdn.microsoft.com/webservices/webservices/building/wse/
http://msdn.microsoft.com/webservices/webservices/building/wse/
http://www.mono-project.com/Main_Page
http://www.mono-project.com/Main_Page
https://forge.gridforum.org/projects/ogsa-wg
http://dsd.lbl.gov/gtg/projects/pyGridWare/
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_lifetime-1.2-spec-pr-02.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_lifetime-1.2-spec-pr-02.pdf
http://www-unix.globus.org/toolkit/draft-ggf-ogsi-gridservice-33_2003-06-27.pdf
http://www-unix.globus.org/toolkit/draft-ggf-ogsi-gridservice-33_2003-06-27.pdf
http://docs.oasis-open.org/wsn/2004/06/wsn-WS-Topics-1.2-draft-01.pdf
http://docs.oasis-open.org/wsn/2004/06/wsn-WS-Topics-1.2-draft-01.pdf
http://www.cs.virginia.edu/~gsw2c/WSRFdotNet/WSRFdotNet_programmers_reference.pdf
http://www.cs.virginia.edu/~gsw2c/WSRFdotNet/WSRFdotNet_programmers_reference.pdf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsn
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsn
http://www.sve.man.ac.uk/Research/AtoZ/ILCT
http://www.sve.man.ac.uk/Research/AtoZ/ILCT

www.manaraa.com

Reproduced with permission of copyright owner. Further reproduction
prohibited without permission.

	Resource-oriented Computing: Design, Implementation, and Evaluation of WSRF.NET
	Abstract
	Introduction
	The Web Services Resource Framework and Web Services Notification Specifications
	WSRF.NET
	Programming WSRF.NET
	WSRF.NET Tooling

	Building Resource-Oriented Systems: How WSRF.NET Adds Value over .NET
	WSRF.NET’s Compliance with Emerging WSRF / WSN-based Systems
	WSRF.NET’s Resource-Oriented Programming Environment
	WSRF.NET’s Automation of Common Tasks

	Evaluation
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

